Emerging Tech

Can AI decide if work is 'inherently governmental?'

Futuristic blue neural network.  Shutterstock ID 769319689 By gonin

Determining whether a function is inherently government is a critical step when an agency is procuring services, and it's harder than one might think. So the Department of Health and Human Services has built a recurrent neural network to help acquisition staff make the call.

The effort is still in proof-of-concept stage, HHS CIO Jose Arrieta told FCW, but the artificial intelligence-powered system already is making the correct determination 86% of the time. The goal is not to automate the entire process, he said, but rather to allow HHS' human experts to focus on the toughest and most-borderline cases.

Those same experts were used to help train the neural network, which used some 9,000 HHS statements of work from past procurements and the Government Accountability Office's guidelines on inherently governmental functions as the starting point.

"What we're trying to do is provide insight so that someone that's really smart can look at what we did and they can say … 'That's not the right prediction,'" Arrieta said. "And that's fine. Or they come back and say, 'You know what, that actually really helped.'"

The pilot project was originally conceived as a "Turbo Tax-style" tool to help contracting officer write new solicitations by pulling appropriate language from past examples, Arrieta said, but Assistant Secretary for Administration Scott Rowell suggested the focus on whether solicitations were touching on inherently governmental functions.

The project took less than six weeks to spin up, Arrieta said, but it did require a different way of thinking. First, there was the need for a recurrent neural network, which can pass outputs back through the system for additional analysis and are especially well-suited to natural language processing. Then all that text from 9,000 solicitations had to be scored.

"You can't do predictive analytics or any type of deep learning on text," Arrieta said. "You have to do it on a number. … We're scoring the level of importance of the words -- how many times is a word repeated?... And then we take that number string that we developed, that vector, and we push it into a predictive model."

The total cost to date has been less than $300,000, he said, and the project identified roughly $100 million in potential savings just on the initial batch of statements of work – 11% to 12% of the total portfolio value. But the goals are bigger than just cost savings, Arrieta argued.

"The better you understand when you need federal employees and when you need contractors to perform a service, the better service outcome you will provide," he said. In addition to the tasks that must by law be performed by federal employees, there are some where government workers would be cheaper than contractors, he noted. Other times outsourcing brings clear cost savings, or "the need is related to a business line that you're standing up, but you don't know if it will actually work," he said. "This type of insight allows us to shape our business model in a way that better serves the customer," Arrieta said.

Other uses of recurrent neural networks are already on the drawing board at HHS. A small cybersecurity pilot -- where HHS found it already had access to the neural network via an existing contract -- is underway, and Arrieta's team intends to tease new acquisition insights out of the solicitation data.

"We also looked at the labor categories," which could help to negotiate better prices for future services contracts, he said. "Can you start to use that same type of analysis to look at job descriptions and start to get an understanding of the types of folks that may apply … so that you can fine tune that job description in a way to truly get the type of candidate you're looking for?"

"We think the lessons learned here are applied on a much broader," he said, "and can be applied to other problems."

About the Author

Troy K. Schneider is editor-in-chief of FCW and GCN, as well as General Manager of Public Sector 360.

Prior to joining 1105 Media in 2012, Schneider was the New America Foundation’s Director of Media & Technology, and before that was Managing Director for Electronic Publishing at the Atlantic Media Company. The founding editor of NationalJournal.com, Schneider also helped launch the political site PoliticsNow.com in the mid-1990s, and worked on the earliest online efforts of the Los Angeles Times and Newsday. He began his career in print journalism, and has written for a wide range of publications, including The New York Times, WashingtonPost.com, Slate, Politico, National Journal, Governing, and many of the other titles listed above.

Schneider is a graduate of Indiana University, where his emphases were journalism, business and religious studies.

Click here for previous articles by Schneider, or connect with him on Twitter: @troyschneider.


  • IT Modernization
    shutterstock image By enzozo; photo ID: 319763930

    OMB provides key guidance for TMF proposals amid surge in submissions

    Deputy Federal CIO Maria Roat details what makes for a winning Technology Modernization Fund proposal as agencies continue to submit major IT projects for potential funding.

  • gears and money (zaozaa19/Shutterstock.com)

    Worries from a Democrat about the Biden administration and federal procurement

    Steve Kelman is concerned that the push for more spending with small disadvantaged businesses will detract from the goal of getting the best deal for agencies and taxpayers.

Stay Connected